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We study the asymptotic behavior of the solution of the three-dimensional prob- 
Iem for a nonhomogeneous anisotropic plate of piecewise-continuous thickness 

when the characteristic relative thickness tends to zero. It is proved that this 
solution (properly normed) tends (in integral norms) to the solution of some two- 
dimensional equations, which in the case of an isotropic plate coincide with the 
classical ones. If the material of the plate has at every point an elastic plane 
of symmetry, parallel to the median plane, and if the plate has a symmetric struc- 

ture, then we arrive to the well-known equations of anisotropic plates [l]. If 
however, there is no such plane, then, apparently, the obtained equations have 

not been given in the literature. The results of the paper give a partial answer 

to the question [Z]: “in what sense is it possible to perform a limiting process 
from the tee-dimensional problem of the theory of elasticity to the two- 

dimensional one for a plate whose cross section has angular points ?“. 

The problem of the limiting accuracy of the classical theory of thin plates of 
constant thickness has been thoroughly studied. Asymptotic expansions of the 
three-dimensional state of stress, whose first term is the solution of the chssical 

theory were obtained in [3 - 6-j. An estimate of the energy norm of the differ- 
ence between the solutions of the three-dimensional problem and that of the 

classical theory was obtained in (7 - 93. In [IO - 121 the state of stress of some 
anisotropic plates, including multi-layered ones, has been investigated by the 

method of [4]. 

1. We formulate the three-dimensional problem Dn. Assume that the median plane 

of the plate occupies the domain 52 of the variables 2 = (zr, ~a), I’ is the piece- 
wise smooth boundary of a, and the plate occupies the domain 

Vh = ((5, Q> I J: E Q, - ht, (x> < 53 < 4 (4) 

ti (cr) > IIL > 0, II2 = const, i=2,2 

Here h > 0 is the ratio between the characteristic thickness and.the characteristic 

dimension of the median plane, t, (x), tl. (z) are piecewise smooth functions. By 
definition, t (z) is piecewise smooth if the closure Qc of the domain 51 can be repre- 
sented in the form 

52” = 6 QiC, gi n Bj = 11, i+j 
i=l 

Each domain Qzi has a piecewise smooth boundary, t (x) is infinitely differentiable 
in Qi, i = 1, . . . . k, at the “joint” domains Bi the function t (5) may have dis- 
continuities. 
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The lateral surface is decomposed into two parts 8, and S, (I’ = lTl U r,), where 

s, = ((5 53) I 2. E r,, - ht, (4 < z3 < IL& (Lx)> 

s, = ((.2, x3) 15 E r2, - ht, (xf < x3 < ht, (3)) 

At S, the plate is rigidly fixed and at Sa the distribution of stresses is given, We intro- 

duce the class of admissible displacements and strains 

U = fu 1 u = (ul, u2, us), rriE W21(V,r), ui = 0 tia S1, i = I, 2,3) 
Eii = ui i , ’ i = 1, 2, 3, Fij=lLi j+-uj,i, i-L’ , IF i, i --: I, 2, 3 

Here and in the following f,i z i3f I aXi, f,, z ~f/~z. 
We perform the change of variable 5s = hz, then the domain v, is transformed into 

the domain VI = ((5, 2) 1 J: E fz, - & (x) < .Z < tl (x)). kt ~4 (x, Z) be a 
6 x6 symmetric matrix, whose coefficients are measurable functions, uniformIy bounded 
in the domain J.7, , while A is uniformly positive definite in the domain V,. We write 

Hooke’s law in the form 

0; = eA (2, h-‘s,) (1.1) 

0 = (%I, fJ22t 0121 %3r n23r G33)l 8 = 'b11, F22, 812, 6139 8237 '33) 

We emphasize the fact that the matrix A does not depend on h, i.e. the character of 

the anisotropy distribution is fixed along the thickness of the plate. We introduce the 

functional of the total energy 

@)h tu> = E,, (u) - L,, (u) (1.2) 

The asterisk denotes the transpose and we assume summation with respect to repeated 

indices. 
Let 

Fib f? Lz (V,), pih, q: E Lz ($l)l fik E LZ (‘2) (1.4) 

The problem D, consists in finding the minimum of the functional @a in the class 

u. 
T h e o I e m 1 [ 13 - 171. The problem D, has a unique solution. 

2, We compare the problem D, with the following two-dimensional problem K,,. 

We introduce 

g: (z) = h [$ Fib (z, x.3) ds, _i- j-$ (z) + g,“(~)] , z E szi, i = 1, 2 

g,” (2) = \ F,h (5, ~3) ds, t A’(X) i- cl?(x), 5 E n 
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xEr2, i=l, 2 

Ti” (4 = h 5 fib (x, 53) dxs, ZEr.2, i=l,Z 

T3h @I == 1 f3h (%53) ds3, 5 E r2 

The integrals in (2.1) are taken between the limits [- ht2 (x), ht, (x)1. The functions 

mlh, m2 h are the moments distributed on Q , Mlh, Msh are the principal moments, 

gab is the normal load, Tab is the transverse force, h-l glh, hmlgzh are the tangent- 

ial loads distributed over Q , h-1 TIh, h-1 T,* are the principal stretching forces. 

We set o = (Cl, $I), Cl = (%I, (J22, %2)r B, = f$3, @23, c33) 

8 = b,, 821, El = (Eli, E22, E&, &2 = bm e23? 833) 

We represent (1.1) in the following form (Ail are 3 x3 matrices): 

fJ1 = WbI +82&x, 

uz = ~lAla + &~Asz, A =/I 1:: Z/l 
(Z.2) 

Making use of (2. Z), we express or in terms of a1 and era 

or = c,B + os&a-l&, B = A,, - A,,A,,L4,, (2.3) 

Lemma 1. The matrix B is symmetric, with coefficients bounded in Vl , uniform- 
ly positive definite in V,, i.e. 

c,L3er* > V&r ’ e,* , VSl, (& 4 E VI, v ‘= const (2.4) 

The proof follows from the properties of the matrix A and the identity 

c,Be,” = (a~, - e+G:&) A (a,, - e&&J* 

We assume formally the Kirchhoff hypotheses; (a) the stresses ~‘a are small in compa- 

rison with ol, (b) the displacements are distributed according to the law 

ILi (x9 x3> = ui (x) - XQW,i (S), i =I, 2, Us (Z, 53) = W (GE), (2.5) 

where ul, v,, w are functions which depend only on x. Then 

El = P (wb3 + rl ($7 7J2) (2.6) 

tn (w) = - bJ*1,17 @,2,2, W,1,2)r rl 64, u2) = b1,1r 772,2? %,l + %2) 

We transform (1, Z), discarding the terms which contain 02, and discarding in (2.3) the 
terms containing o,, we substitute the obtained relation o1 = cIB into E,. Making 
use of (2.6). we obtain the functional 

s 
(pz, + q) B (pz, + q)” dz dz, = + 1 (h’@‘P* + 12* 7, 

vh 

P{x)=+ s IB(x, 2) + Btx, - .41zZh 
-fr Bf 

t1 (xl 

Q (x) = + s [B (x, z) - B (x, - z)] dz 
--tr(=) 
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We substitute (2.5) into (1.3). Integrating with respect to x3 we obtain the functional 

We introduce the energy functional of the thin plate in the class of the three functions 

‘l’h (+? b d = e/L (VI7 v21 w) - 1, (vlt u2, w) 

G = {(Q,, 2’2, w)1 U], v2 E W2l (sz), w E w,2 (B), vr = v2 = w,l = 

UJ,, = w = 0 on I?,) 

The problem R,, consists in minimizing the functional I&~ in the class G. 

Note 1. If the plate has a symmetric structure, i. e. A fs, z) = n (5, - z), 
then also B (z, z) = B (5, - z) and the matrix Q (z) is equal to zero. Then the 

problem li, splits into a bending and an extension-compression problem. 
We introduce the space 0, consisting of all possible collections of functions IY = 

Cm,, 17~2, ~1: gs, gs, Jfi, M2, TI, T2, T3), such that mi, gt c L2 (a), Jfi, 

Ti E? L, (rJ ; by ij Q jl we denote the sum of the norms in L, of all the components 
of ib. For the sake of brevity we denote the system of loads of the three-dimensional 
problem by Nh, then the formulas (2.1) can be considered as a transformation which 
associates to every system of loads Nh a system of forces and moments en E 0 

19,~ = (mlh, m;, g;, g2h, gjh, Mlh, I-&~, Tlh, TR,h, Tsh) 

Obviously, the problem k;, makes sense for any 6 6~ 6, and not only for fi = eh. 
We introduce the notation: if V is a domain, then the norms in the spaces L2 (v>, 
TV,” (V), w2” (v) will be denoted by 11 * \lv, I[ * 111,~~ 11 - l\t.v ,respectively. 

Lemma 2. The problem Kh (6) has a unique solution (vZh, vsh, wh), and 

ZQ = h-au,‘, % h = h-%,I, Wh = jy3wl CL91 

where (u,s, v2i, w’) is the solution of the problem K1 (6). 

Proof. Since IJ:~ is a convex functional, the existence and the uniqueness of the 

solution follows from the inequality [18] 

(11 29 11; o + II c2 [I,” o + I! 70 11; n) < Crh (211, 2’2, w 1 (2.10) 

which holds for any triplet (Q, vZ, W) E G; here and in the following we will denote by 
the letter c different constants, Let us prove (2.10). From (2.4) 

Since u’, UJ,~, 2~‘.:, vanish at TI, the first of the integrals of the right-hand side is a ma- 

jorant of the norm UJ in WZZ (62). Kern’s inequality is well-known Cl3 - 171; let V E 

Rn be a domain with a piecewise smooth boundary and assume that on some (n - l)- 



Asymptotically exact equations of thin plates of complex structure 57x 

dimensional piece w of the boundary of the domain I/ the functions ~1, v,, . . ., v,, 
belonging to W,* (V), are equal to zero, then 

i li~~&~Cj ~ 5 (Q -+i,i)3]dJ (2.11) 
i .=I v i,j=l 

with a constant c depending on V and o. From (2.11) we obtain (2.10). 
We can verify that !&$h (h-%r, h-‘$, he3w) = $1 (~1, v2, w), from where we obtain 

(2.9). 
We require that Nh satisfy the condition 

11 JQ,q: I/C?, < h%, i = 1, 2, I/ I& 4: [o < co, (2.12) 

II fi'lj.5~ 6 jL 
-s It 

CO7 i=l,2 

j/ f3h /Is, < K1%o, jj Pih JJV, < KS.'2Co, i = 2, 2, II F,h \\v, < h-‘% 

where the constant co does not depend on h. Let us consider the sense of the conditions 

(2.12). Each of the loads creates a state of stress which tends to infinity with a well- 

defined rate. For the fundamental load we have chosen the load normal to the upper 

face,the corresponding state of stress behaving like: ur, ua, orr, oa2, o1a N hC2, 

@3 - hm3. Therefore,if the tangential loads plh, pZh, qlh, qzh increase whith the 
change of h, but with a rate not higher than h-l (as prescribed by the conditions (2.12)), 

their contribution to the state of stress has an order of growth not higher than the con- 
tribution of the normal load. The remaining estimates were selected from similar con- 
siderations. It can be verified that if Nh satisfies the conditions (2.12), then 

II fihjl < cc0, Le. n mih, gih jlp < CC@, 11 Mih, Tih \jrn < cc0 (2.13) 

where the constant c does not depend on h. 
Theorem 2. Assume that N” satisfies condition (2.12) and that we have for 

h -+ 0 the limit 

(This means that each component of ah converges in L, to the corresponding compon- 

ent of 6’). We denote by (uI1, uzl, 7.~‘) the solution of the problem K,(@), then 

tlie solution uh, aiji’ of the problem Dh (N”) can be represented in the form 

Uih (~3 ~3) = h-” [ - w,il (x) Iz-‘s, + vi1 (x) + Rth (XI h-lx,) 1, 6 = 1, 2 (2.14) 

us’ (5, x3) = hF3 [w’ (x) + I?,’ (x, h-“z,) J 

alf’(5, x-3) = (c& G2sh, GIZh) = 
h-2 (B.1 p (w”) h-lx, + q (~2, u,l)] + bh (z, h-W} 

u,’ (5, x3) = (Quip, Q~‘, &‘) = h-“Rzk(x, h-‘s,) 

(II ffih n1. v, - 0, i = 1, 2, 3, 11 Rp jjV1- 0, i = 1, 2 for h -+ 0) 

Note 2. The representation (2.14) can be considered as the mathematical proof 
of Kir~hof~s hypothesis. 

Note 3. We set 

wh (CO, Nh, @‘> = i II Rs” \\I, VI + i 11 JJi’/jl, y, 
i=l i=l 
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In Theorem 2 it is asserted that if fib -+ 6”, h + 0, then gh (co, Nh, So) --t 0, 
h 3 0, i.e. 09 (co, lYh, So) is an estimate of the nearness of the solution of the 
problem Dh (Nh) to the solution of the problem Kh (SO). Naturally it is desirable 
not to require oh -+ 6”, h -+ 0, but rather compare the solution of the problem 
Dh (Nh) directly with the solution of the problem Kk (oh), i.e. to study the beha- 
vior of the quantity e?. (co, Nh, fk”). It turns out that gh (c,,, lVh, 0”) -+ 0, regard- 
less of the behavior of fib; more exactly, the following theorem holds. 

Theorem 3. We fix h and from all the loads satisfying the condition (2.12), we 
select the load N,h so that the quantity gh (co, iv”, 6”) be maximized (we can 
prove that such N,” exists) 

meh (ca) T= max 09 (co, Nh, fP)f mh(cO, huh, 6,*) 

,\ h 

Then oh* (co) --+ 0, h -+ 0. 
Corollary. Let Nib, Nzh b e statically equivalent loads, i.e. the same ah cor- 

responds to them, let ulh, us h be the solutions of the problems D, (Nlh), Dh (Nzh) , 
respectively. Then, since each of these solutions differs from the solution of the prob- 
lem Kh (Oh) by at most tieh (Co), they differ among themselves by at most 2”,h (cJ. 
This assertion can be considered as a weak form of the Saint-Venant principle for plates 
(weak in the sense that one makes use of integral norms and there is no estimate of the 

rate of convergence). 

3. We shall divide the proof of Theorem 2 into a series of lemmas. We formulate 
in a different way the results of Theorem 2. Let 

u fjz u, ui (2, 2) = h2Uj (5, hz), i- 1, 2, us (z, 2) = h3Ua (z, hz) 

Uih (X, 2) = h2zQ (z, JLZ), i=l, 2 ) ?Q (x, 2) = h3U3h (5, hz) 

u = (U,, u,, U,), tih = (l-J,h, U2h, u h 3) 

Obviously, U, ch are vectors with components from Ws’ (VI) and Ui = Uih = 
0, i = 1, 2, 3, on S,l = {(z, 2) 15 E lYl, - t, (x) < z< t, b)}. We introduce 
the quantities 

6.i* = Ui,i, i = 1, 2, 612 = uz,i + u1,2 (3.1) 

hi3 = a3i = h-l(U3,i + lJi,z), i = 1, 2, 63s = h-2UsB, 

6 = (611, 622, 6is,613, 623, 633), 61 = (6119 622~ 612), 62 = (&3, '23, 633) 

We can verify that 
6ij (Z, 2) = h2Eij (Z, hZ) (3.2) 

We set 
6ijh G 6ij (Uh) G h2Eijh (x, hi), aijh ES h2Gijh (Xl Z) (3.3) 

ah = (aIIh, a22 , h a12h, a13h, a23h, a33h), al 
h< 

(a~~, a22h, a12h), 

a2 h =(~3h, a23hl a33h) 

The relations (2.14) are equivalent to the representation 

Uih (x, Z) = [vi1 (2) - ZU, Z1 (x) z f Rib (~9 z)I, i z 1, 2 
U3h (5, z) = [z/9 (x) + R,” (x, z)] 

(3.4) 

at (z, z) = B [p (w’)z $- q (q, us) 1 + Rlh (x7 2) 
ash (z, z) = R2h (z, z) 

( 11 Rib/j 1, VI+ 0, i = 1, 2, 3, l\Rihi\v, +O, i=l, 2, for h +O) 
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Lemma 3. The following estimates uniform in h : 

II~ih~LVr<% i=f, 2, 3 (3.5) 

jj &jh /IV,< cCO~ i,i=I,2,3 (3.6) 

where ca is the constant from the conditions (2.12), are valid. 
Proot. In order that uh be the solution of the problem D,, it is necessary and suf- 

ficient that for every u E U the identity 

s (The* (u) ax dx, = L, (n) 

vh 
(3.7) 

is satisfied. Obviously 
ah = @.A (x, 2) (3.6) 

Multiplying both sides of (3.7) by h3 and making use of (3.1) - (3.3), we obtain the 
identity 

1 a%* (U) ds dz = S(U) (3.9) 

i(U) 3 J,(h'i FihUi +hF,hU3)dxd~ +Jlh2~lf~“U~drd~ + 
i=l 

or, in another form, the identity 

{ 6hAS* (U) dx dz = S (U) 
+* 

(3.10) 

The estimates (2.12) have been chosen in such a way that, making use of Cauchy ine= 
quality and the imbedding theorem [193, we obtain 

I fs (U> t < cc0 II Ull l.Vr 

Substituting U = Uh, into (3.10). we obtain the estimate 

s 2 (6ijh)2dxdz = 1 [i (~~iY + (uz,l+ Ul,2)2 -t- 

Y, i<j VI i=l 
(3911) 

let h < 1, we strengthen the inequality (3. ll), replacing in the left-hand side h by 

unity, making use of Kern inequality (2.11) and Cauchy inequality with E, we obiain 

(3.5) and from (3.Q (3.11) the estimate (3.6) follows. 
C or o 11 a r y . It follows from (3.5) that the family Uh is weakly compact in IV,’ (VI), 

while from (3.6), (3.8) it follows that the families 
La (VI). 

Giih, aiih are weakly compact in 

We denote by U” = (UiD, Uzo, UaO), 6fjo, ati0 some weak limit points of these 
families. Later we will prove the uniqueness of the limit, therefore, without loss of gene- 
rality we assume that Uih converges weakly to Ui” in IV,’ (VJ, 6ijh converges 

’ weakly to 6ij” in L, (VI), and OZijn converges weakly to aii” in L, (V,). 
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Lemma 4. The functions Ulo, us’, Us’ can be represented in the form 

us0 (2, 2) zz us0 (X), us0 ‘c_ Vvss (a) (3.12) 

Uf" (x, 2) = Vi" (ix) - u3,io (x)2, Vi" (zig E W,l (Q), i = 1.2 (3.13) 

VI” = V,” = U3,10 = U3,2o = Us0 = 0 on rlt i.e. (V1oY v,“, (3.14) 

Us”) EG 

Proof. From (3.6) we have ji u;, r ljv, < CC&~, therefore Ui,, EZ 0 in V,, i.e.(3.12) 

holds. From (3.6) we have 11 u$ + u[ I I/~, ,g CC&, i = 1, 2, whence Vi. z = - Ul, + t 
therefore denoting by L’i‘ (x) the trace of the function Ui” on the plane{% E 52, z = u} , 

we obtain (3.13), where Vi” (x) E L, (52). In the left-hand side of (3.13) we have a func- 
tion which beIongs to B’s1 (VI) and is equal to zero on SIl, therefore it is necessary 

that Vi’, U,“.i E W,l (ii?) and (3.14) holds. 
Corollary. 

6,” = p (Us? 2 + r (V10, VI”) (3.15) 

Lemma 5. The following equalities are valid : 

R3 ’ 3 0, az,” == 0, a330 = 0, i.e. azo== 0 (3.16) 

Proof. Let us prove first that a130r a2so, c+,* are constants with respect to the coor- 

dinate z. Let v be a smooth finite function in the domain VI , We set in the identity 

(3.9) U = (0, 0, rp), then 

s 
(a13*h-l~,I + cc23%-‘cp,z -i_ ?&-2q, ,) cllc: dz = s (U) (3.17) 

VI 
Multiplying (3.17) by hs and taking the limit for fixed ‘p and h --+ 0, we obtain the 

identity 

s 
r&I, z dx dz = 0 

v1 
Let us prove that if f E L, (iTI) and if for every smooth finite function 9 in V, the 
identity 

s 
jcp, z dx dz = 0 

(3.18) 
VI 

is valid, then f (2, Z) ZE f (r). In fact, assume that the positive number p is smaller than 
the distance from the boundary of V, to the carrier of the function 11, (the carrier of a 
function is the set of points where the function is different from zero), then changing in 

(3.19) cp by ‘pp (cp, is the average of the function ‘p in the sense of 3, L. Sobolev), we 

obtain 
s f (Q,fzdl d‘? = - s (f,), z cp dx dz = 0 
Vl V 

Hence it follows that in each interior subdomain of the domain VI we have (f& = 0, 

i.e. fp (x, z) = r, (2). But II f,- f llvl --) 0 for p + 0, from where it follows that in 

every interior subdomain (and, consequently, in the entire domain V,) f 3 f (2). From 
what we have proved it follows that asso z a3so fz); similarly, 

%, 
o- 

= %3° (4, a29o EE cQ30 (2). 

Assume now that 9 (z) is a smooth finite function in the domain G , We set U = 
(0, 0, ? (2)~) in (3.9) and we obtain the identitv 

s 
(Y&L%a), 1 -j- x.13 “h-‘-T 2 -t r&r2q) dx d,- _: S (U) , (3.19) 

V1 
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Multiplying (3.19) by hs and taking the limit for h -+ 0, we obtain 

c aas"cpda dz = 0 
. 

Vl 
(3.20) 

But ao3a depends only on I, therefore from (3.20) it follows that a3s0 E 0. Similarly, 
we obtain that Go = az30 = 0. 

Lemma 6. The following equalities are valid : 

VI” = vll, vto := uzl, U,” = WI (3.21) 

Proof. Let us prove that the triplet (Vi’, I’,“, U,“) satisfies the identity (3.24). 
which is a necessary and sufficient condition in order that this triplet of functions be the 
solution of the problem K, (SO), and by virtue of the uniqueness of the solution of 

problem Iill (6 “) we obtain (3.21). 

We set in (3.9) c’ = (vi - w,izi, us - w$, w), where (vi, va, w) E G. Then 

61 NJ) = p (w)s + rl ( vi, us), 6s (U) = 0, and (3.9) takes the form 

s cCi%i” (U) dn dz = s (U) (3.22) 

Vt 
But from (3.8). (3.3). (2.3) it follows that 

OClh zzz SlQ -; tr&l$4*1 (3.23) 

Substituting (3.23) into (3.22), taking the limit for h -+ 0, making use of (3.10 (3.15) 
and integrating with respect to z, we obtain the identity 

Thus, the representations (3.4) are proved with the stipulation that Rib, Ri" converge 

weakly to zero in vV,l (VI>, L, (VI) , respectively. 
Lemma 7. @O]. Let fr be a Hilbert space. If the sequence {fh} E H and fh 

converges weakly to fo, in H and, in addition, 11 f llFI --f I/ f. 11 N, h + 0, then jr, 
converges strongly to f. in H. 

Le m m a 8 (concluding the proof of Theorem 2). The following limits for h -+ (I 
are valid : 

Ii Gh - vi” Ill. v, -+ 0, i = 1, 2, 3 (3.25) 

fJazh IV*-+ 0 (3.26) 

Pr oo f. Substituting U = Uh into (3. lo), after transformations we obtain 

s [6ihB(6ih)* + a2hA,-;l-(cczh)*]dxdz = S(Un) (3.27) 
VI 

By virtue of the embedding theorem [19]. the family Uh is strongly compact in L,( VI), 

while the family of the traces of the functions cn on the surface ,$a1 is strongly com- 

pact in L, (h’,l). Therefore, making use of (1.4),(2,1), (2.121, we can show that for 

h-0 
(3.28) 
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Since 6,h converges weakly in L, (VI) to 6i”, we have the inequality 

i 6r”B (a,‘)* dx dz < fiy $ elhB (iYlh)* dx dz (3.29) 
v1 1 

From (3.27) - (3.29) and from the uniform positive definiteness of the matrix AsaL it 
follows that 

From (3.31) we obtain (3.26). while from (3.30) and from Lemma 7 we obtain 

/I 61h - ~lo~~vl-, 0, 11 - 0 (3.32) 

Le m m a 4, (3.6), (3.32) give the following relations (in (3.33) the convergence is 

in L,( V,) for h -+ 0) : 

(U~,i+U~,*)->O==U~,i$-Uie,, i-1,2; U~,p_+OEU~e, (3m33) 

lJ!: i-> Uy, i 3 i=-l, 2; cu:, 2 4 u:L 1) -> cul”, 2 -I- u;, 1) 

From (3.33) and Kern’s inequality (2.11) we obtain (3.25). 
Let us prove Theorem 3. Assume that the assertion of the theorem does not hold. By 

6,h we denote the totality of the integral characteristics corresponding to the load 

N,“. By virtue of (2.13) there exists a sequence hi + 0, i --t 00, and 6’~ 8, such 
that each of the components 6 hi converges weakly in L, to the corresponding compo- 
nent of 6”. Observing the proof of Theorem 2, we can see that in order that it should 
hold it is sufficient to have at least the weak convergence of tih to I?“, therefore 

ahi (co, A+, So) + 0, i -+ co. Following the proof of Lemma 8, we can prove that 

1 ghi (co, A$, So) - ahi (co, N?, Ski) 1 -+ 0, i-t 00, 

and then we obtain that ghi* (ct,) -+ 0, i -+ 00. The contradiction obtained proves 
the theorem. 
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CONTACT PROBLEM OF ROLLING OF A VISCOELASTIC CYLINDER 

ON A BASE OF TXB SAME ~T~AL 

PMM Vol. 37, W5, 1973, pp. 925-933 
I. G. GORIACHEVA 

(Moscow) 
(Received March 1, 1973) 

The problem of rolling of a viscoelastic cylinder on a base of the same material 

is solved under the assumption that the whole contact area consists of two sec- 
tions: a section with adhesion and a section with slipping of the contacting SIP 

faces. Equations are found to determine the length of the contact area and the 
adhesion section, as are expressions for the stresses on the contact area. 


