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We study the asymptotic behavior of the solution of the three-dimensional prob«
lem for a nonhomogeneous anisotropic plate of piecewise-continuous thickness
when the characteristic relative thickness tends to zero, It is proved that this
solution (properly normed) tends (in integral norms) to the solution of some two=
dimensional equations, which in the case of an isotropic plate coincide with the
classical ones, If the material of the plate has at every point an elastic plane
of symmetry, parallel to the median plane, and if the plate has a symmetric struc-
ture, then we arrive to the well-known equations of anisotropic plates [1], 1f
however, there is no such plane, then, apparently, the obtained equations have
not been given in the literature, The results of the paper give a partial answer
to the question [2]: "in what sense is it possible to perform a limiting process
from the three-dimensional problem of the theory of elasticity to the two~
dimensional one for a plate whose cross section has angular points ?",

The problem of the limiting accuracy of the classical theory of thin plates of
constant thickness has been thoroughly studied, Asymptotic expansions of the
three-dimensional state of stress, whose first term is the solution of the classical
theory were obtained in [3 -~ 6], An estimate of the energy norm of the differ-
ence between the solutions of the three-dimensional problem and that of the
classical theory was obtained in [7 — 9], In [10 — 12] the state of stress of some
anisotropic plates, including multi~layered ones, has been investigated by the
method of [4].

1, Wwe formulate the three~dimensional problem ;. Assume that the median plane
of the plate occupies the domain Q of the variables z = (r;, 2,), I’ is the piece-
wise smooth boundary of £, and the plate occupies the domain

Vi = {2, @) |22 Q, — hty (2) < 2 < bt (2)}
t{ry=>m >0, m == const, i=1,2

Here 7 > O is the ratio between the characteristic thickness and the characteristic
dimension of the median plane, {, (x), #, () are piecewise smooth functions, By
definition, t (x) is piecewise smooth if the closure 2° of the domain € can be repre-

sented in the form . k .
Q= Q°F, UNQ=A, Q]
1=}

Each domain Q; has a piecewise smooth boundary, ¢ (z) is infinitely differentiable

in Q;, i =1, ..., k, at the "joint" domains ; the function £ (z) may have dis-
continuities,
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The lateral surface is decomposed into two parts Sy and S, (I' = TI', | ] I',), where
Sy = {(z, zg) | v = Ty, — bty (2) < 23 < hty (2)}
Sy = {{z, z3) |z = Ty, — hty (2) < 25 < Ity (2)}
At S, the plate is rigidly fixed and at S, the distribution of stresses is given, We intro-
duce the class of admissible displacements and strains
U=1{u|u="(uy,uy ug), t;, =W, (Vy), u;=0m S, i=1,2,3}

g =, 1=1,2,3, g =1 ;U UFT i, 7=21,2,3

Here and in the following f; = df / dx;, f,, = 9f/0z.

We perform the change of variable xy = hz, then the domain V}, is transformed into
the domain V; = {(z,2) |z = Q, — t, (2) < z2 << 4 (2)}. et A (z,2) bea
6 x6 symmetric matrix, whose coefficients are measurable functions, uniformly bounded
in the domain V, , while 4 is uniformly positive definite in the domain V,. We write

Hooke's law in the form
¢ = g4 (z, h'lz,) (1.1)
¢ = (0yy, O3y, Oyp, Oys, Oayy Ogg)s & = (€11, €32, 12+ E13, 23, E33)

We emphasize the fact that the matrix 4 does not depend on £, i,e, the character of

the anisotropy distribution is fixed along the thickness of the plate, We introduce the
functional of the total energy

@y, (u) = £, (u) — L, (u) (1.2)
E, (u) = —-12— % oe*dedr, = «i,- S ede* dz dx,
vy - v,
Ly = § Fluideday + §(plu + ¢/ui)de + § flwardn,  a.9)
Vh Q Ss

u* (z) = u; (z, hty(2)), uim (2) = w; (z, — ht, (2))
The asterisk denotes the transpose and we assume summation with respect to repeated

indices,

Let
Frel, V), plha' €L, e LS 1.4

The problem D, consists in finding the minimum of the functional @, in the class

U

Theorem 1 [13~17], The problem D, has a unique solution,

2, We compare the problem D, with the following two-dimensional problem K.

We introduce .
m* @) = \ " @, 2 aydry + bty (@) P (@) — ko (2) 4" (2) 2.1)
e Q, i=1,2

glh@=nh B FM @, 25)dzg + pi () + ¢ (:c)], rEQ, i —=1,2

g @) =\FP@ o) e+ @ + ot @), zeo
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M} (x) = Sfih (T, x3) 23dx3, 2Ty, i=1,2
Tr@) =h{f"@, o)z, zem 1,2

T3h (z) = sth (z, z3)dzy, =ze&Ty

The integrals in (2,1) are taken between the limits [— ki, (z), k¢, (z)]. The functions
m,", m," are the moments distributed on Q , M", M, are the principal moments,
g4 is the normal load, T4" is the transverse force, h™! g,", h'g," are the tangent~
ial loads distributed over @ , B! Tl", ht Tz" are the principal stretching forces,
weset ¢ = (01: 02)! g; = (011’ Gans 012)1 G, = (613’ Ta3s 033)
e = (g5, 8), & = (Ens Eggr B12)y €2 = (E15; £33, E33)

We represent (1,1) in the following form (A;; are 3x3 matrices):

0; = 81 Ay + 8340, Ay Ap

Oy == 8141 + €24, Az Aae
Making use of (2, 2), we express ¢, in terms of £, and o,

6, =&B + 62A22_1A21v B = Ay — AlezznlAal (2.3)

Lemma 1. The matrix B is symmetric, with coefficients bounded in ¥V , uniform=
ly positive definite in ¥, i e,

(2.2)

e Bey* >ve -e*, Ve, (z,2)=V,, v=-const (2.4)
The proof follows from the properties of the matrix A and the identity
&,Be,* = (8;, — €145 A2)) A (8, — 8,45 A))*
We assume formally the Kirchhoff hypotheses; (a) the stresses ¢, are small in compa«
rison with Gy, (b) the displacements are distributed according to the law
u; (7, 23) = v; (2) — Tl (@), i =1, 2, uz (z, 23) = w (), (2.%)

where v;, vy, w are functions which depend only on x. Then

g, = p Wz + N (01, v) (2.6)
B W) = — W1 00 012, N Uy, Va) = (V10 Vags Vaq + V1)
We transform (1, 2), disearding the terms which contain ¢,,and discarding in (2, 3) the
terms containing g,, we substitute the obtained relation ¢, = ¢, B into E,. Making
use of (2, 6), we obtain the functional .
en (V1 U, W) = —-1;- S (nzg +m) B (s + )* dz dz; = —} S(h“uPu* + @0
v Q
" Put 4 KRON* + KnQu®) do
1(x}
P@) =5 \ [B@2)+B@ —21ds,

—tg{x}
t1(x)

0@ =~ \ [B(z 2 — Bz, —2)zdz
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We substitute (2,5) into (1,3). Integrating with respect to x4 we obtain the functional

l!z (Ulv Uy, Z[,’) = S‘
0

(g 1 eahu 4 mihw,i) dx —’rS (BT o+ (2.8)
Thw — MMw . ydr F

+2

We introduce the energy functional of the thin plate in the class of the three functions
1”h (Ulv V2, w) = €y (UU Vs, w) - lh (v11 Usgs w)

G = {(vy, vy, W] vy, v, & W (Q),w = W2 (Q), v, = vy = w,; =
wy, = w =0 on I}

The problem XK, consists in minimizing the functional 1y, in the class G.

Note 1, Ifthe plate has a symmetric structure, i.e. A4 (r, z) = A (z, — 2),
then also B (z, z) = B (z, — z) and the matrix (x) is equal to zero, Then the
problem K, splits into a bending and an extension-compression problem,

We introduce the space (), consisting of all possible collections of functions ¥ ==
(my, Moy 81s 82y 830 My, My, Ty, Ty, T'g), suchthat my, g; & Ly (Q), My,
Ti &= Ly (L) ; by I 0| we denote the sum of the norms in L, of all the components
of 1I. For the sake of brevity we denote the system of loads of the three-dimensional
problem by ¥ % then the formulas (2,1) can be considered as a transformation which
associates to every system of loads V" a system of forces and moments §" = 0

h R _h _h h arh mph mh ph

{"h:(ml L] n?ﬂhvgl y 82 s 83 5 A[l ] /!2 L] [’1 aT‘.Z 173 )
Obviously, the problem K, makes sense for any & < 6, and not only for ¢ = ¢".
We introduce the notation: if V is a domain, then the norms in the spaces L, (V),

Wt (V), Wy (V) will be denoted by | * v [ = vy | * [av, respectively.
Lemma 2, The problem K (8) has a unique solution (v, vy w"), and

R R R A T 2.9

where (v}, »,!, w') is the solution of the problem K; (9).
Proof, Since v, is a convex functional, the existence and the uniqueness of the
solution follows from the inequality [18]

Aol q+1nl o+ el o <co, (o, vs,w) (2.10)

which holds for any triplet (»,, v,, w) € G; here and in the following we will denote by
the letter ¢ different constants, Let us prove (2,10). From (2,4)

& > S [ () 73 + 7 (21, 72)] [ (0) w5 + 71 (01, v2)]" dadzs >
Vi
h msy

3 5 (21,02 + & (w1, 0)? + (5,51 dw -
0

vizmg (o, + (V9,00 1 (vg,, -+ 7y, o ldx
Q
Since w, w,;, w, vanish at Iy, the first of the integrals of the right-hand side is a ma-
jorant of the norm w» in W, (Q). Korn's inequality is well-known [13—17]; letV &
R™ be a domain with a piecewise smooth boundary and assume that on some (n — 1)~
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dimensional piece o of the boundary of the domain V the functions 21, 2y, .. ., v,,
belonging to Wt (V), are equal to zero, then

n , . on
Snl v <e\[ 3 o5+ v, 0] av (2.11)
i1 Vi, =<1
with a constant ¢ depending on V and . From (2,11) we obtain (2.10).
We can verify that k¥y (h"%0;, ™20y, B%w) = Y (v1, 22, w), from where we obtain
(2.9).
We require that V" satisfy the condition

P g e <h e, i=1,2, (2" 6" la<<co (2.12)
H fih HS«.: <\ hﬂs 260, i=1,2

o s <<B 0, M, <B 0, i=1,2, [F3 v, <A

where the constant ¢, does not depend on %. Let us consider the sense of the conditions
(2.12), Each of the loads creates a state of stress which tends to infinity with a well~
defined rate, For the fundamental load we have chosen the load normal to the upper
face, the corresponding state of stress behaving like: 1, u,, 0y, Ogg, Oyp ~ k7%,

Uy ~ K73, Therefore, if the tangential loads p,", p,", ¢;", ¢," increase whith the
change of %, but with a rate not higher than 42! (as prescribed by the conditions (2,12)),
their contribution to the state of stress has an order of growth not higher than the con-
tribution of the normal load. The remaining estimates were selected from similar con=
siderations, It can be verified that if V' satisfies the conditions (2,12), then

107 ] <Ceeor tes Imit, & o < ceor | MY, T o, <cep  (2.13)

where the constant ¢ does not depend on A,
Theorem 2, Assume that N satisfies condition (2,12) and that we have for
h— ( the limit
> 0°, 0° = (m,°, my°, g1°) &5 &° My, By, % T, Ts)

(This means that each component of 9" converges in L, to the corresponding compon-
ent of 0°). We denote by (v!, v, w') the solution of the problem K,(8°), then
the solution u®, ¢;* of the problem D, (N") can be represented in the form

uM(z, 25) = R [— wi @) h 7'z 4+ vt (@) - RS, hT2g)), i=1,2 (2.14)

u3h (23, .22'3) = hrs {wl (.’L‘) + R?oh (2:, hﬂlx:i)]

0." (z, 75) = (on", 02", G12") =

B2 (B [ (') 72y ++ (i, va))] + Ry™ (, By}
;" (z, z3) = (Glsh, Sag"y Gas”) = PR (2, hlzy)
R My v, — 0, i=1,23 [RI,—0, i=12 for h—0)

Note 2. The representation (2.14) can be considered as the mathematical proof
of Kirchhoff's hypothesis,
Note 3, We set

3 2
o (o, N*, 0°) = DI RMuvo -+ DR, o,
i=1 i=1
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In Theorem 2 it 1s asserted that if 9" — 9°, h — 0, then " (¢, N, 9% — 0,
h— 0, l.e. ©" (cy, N", 9°) isan estimate of the nearness of the solution of the
problem Dj (N"} to the solut1on of the problem K (0°). Naturally it is desirable
not to require 9" —~ 8°, & — 0, but rather compare the solution of the problem
Dy, (N") directly with the solution of the problem K, ("), i.e. to study the beha-
vior of the quantity @"- (co, V", 9"). It turns out that " (¢y, N, 9") — 0, regard-
less of the behavior of §"; more exactly, the following theorem holds,

Theorem 3, We fix 2 and from all the loads satisfying the condition (2,12), we
select the load N," so that the quantity ©" (cy, N", 9%) be maximized (we can
prove that such N, " * exists)

0" (Co) = ma\uo (coy N, ") = " (cq, N8N

Then o *(CO)—+0 h——>0

Corollary, Let N Nz be statically equivalent loads, i, e, the same 4" cor-
responds to them, let u,", u,” be the solutions of the problems D, (N,"), D, (N,") ,
resPectlvely. Then, since eacn of these solutions differs from the solution of the prob-
lem K, (0") by at most 0," (¢o), they differ among themselves by at most 20, (c,).
This assertion can be considered as a weak form of the Saint-Venant principle for plates
(weak in the sense that one makes use of integral norms and there is no estimate of the
rate of convergence),

8, We shall divide the proof of Theorem 2 into a series of lemmas. We formulate
in a different way the results of Theorem 2, Let

ue= U, U;{z, 2) = hu; (x, hz), i=1,2, U, (z,2) = h%u, (x, h2)

UM (z, 2) = k2 (2, ha),  i=1,2, U (x, 2) = h3u," (z, ha)

U = (U17 Uz, U3), Uh = (Ulh, Uzh, Uah)
Obviously, U, U™ are vectors with components from W,! (V,) and U, = U;" =
0, i=1,2,3,on S = {(z,2) |z =Ty, — 4, (z) <z<<t (x)}. We introduce

the quantities 3.1
8u=Ui, i=12 812 =Us1+ Uy (3.1)

;s = 03 = ht (Us,i Uy, i=1,2, 533 = h’ng,z
6 == ((Slly 6227 6127 6131 6237 633)9 61 = (611’ 6221 612)3 82 = (6131 623v 633)
W rify that
€ can ve 1fy a 61]' (I, Z) — hzgij (1‘, hz) 3.2)
We set
8, = 8, (UM) = k%t (z, hz), ;" = b (2, 2) (3.3)
ot = (0.11", das”, ", 0«13h7 azsh, aaah), a1“ = (0«11", azzh, flnh),
o = (a13h7 azsh, (133")
The relations (2,14) are equivalent to the representation
M (e, 2) = [vll (@) —w, (@) 2 + R (2, 2)], i=1,2 5.4
Ush (z, 2) = [w' (2) + R, (x, 2)]
o (z, 2) = B [ Wz + 1 (vy, 1) 1 + R (z, 2)
et (2, 2) = R, (z, 2)
(JRM ,v.—0, i =1,2,3, Ry, =0, i=1,2, for h—0)
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Lemma 3. The following estimates uniform in 4 :

VUM uv<eco, i=1,2,3 (3.5)
18 ve<Ceco,  4,7=1,2,3 (3.6)
where ¢, is the constant from the conditions (2,12), are valid,
Proot, In order that u” be the solution of the problem D, it is necessary and suf~
ficient that for every u <= U the identity
g o"e* (u) dx dey = Ly (u)

(3.7
Vi
is satisfied, Obviousl
¥ h ShA (1., Z) (3.8)
Multiplying both sides of (3,7) by 4% and making use of (3,1) — (3. 3), we obtain the

identity

\ a"8* (U)dz dz = S (U) (3.9)
v, . 2
suy={ (m S P+ hFa"U3) dedz + (W3 1AU.dT dz +

Vi i=1 Sit (eSS

2
{ a0 al dz 4 { [0 D pPU + 6MU0) + U + 00U |do
Q

Sat i=1
or, in another form, the identity
{ 6" 48* (U)dzdz = S (U) (3.10)
7

The estimates (2,12) have been chosen in such a way that, making use of Cauchy ine~
quality and the imbedding theorem [19], we obtain

FS(O) 1 << eeo | U] 1

Substituting U = U", into (3,10), we obtain the estimate

{3 @ydedz = S [2 (UL + Uz + Uro)® + (3,11)
Vi 2<g Vy "i=)

2 KR (UR 13- UL+ bt 2)2] dz dz < ceo| U |y, v,

i=1

let A << 1, we strengthen the inequality (3,11), replacing in the left-hand side % by
unity, making use of Korn inequality (2,11) and Cauchy inequality with &, we obtain
(3.5) and from (3. 5),(3.11) the estimate (3, 6) follows,

Corollary, It follows from (3, 5) that the family /" is weakly compactin W, (V),
while from (3. 6), (3. 8) it follows that the families & f;‘h’ aiih are weakly compact in
Ly (V).

We denote by U° = (U,°, U,°, U5"), 6 , G some weak limit points of these
families, Later we will prove the uniqueness of the limit, therefore, wuhout loss of gene~
rality we assume that UU," converges weakly to U7,° in W, (V;), §;;* converges
weakly to 8;;° in L, (V}), and o;;* converges weakly to a;;° in L, (V).
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Lemma 4, The functions U,°, U,°, U,° can be represented in the form

U (z,2) = U (2), U= Wy (Q) (3.12)
U°(x,2) = V,° () — U,,;° (2)z, V() = WH(Q), i=12 (313)
VP =V, = U3,10 - Ua,zo = U, =0 on Iy, ie. vy, vy, (3.14)
UY=6
Proof, From (3,6) we have || Uj . Iy, < ceoh?, therefore U, .= 0 in Vi, i,e.(3.12)
holds. From (3,6) we have | UP, + UP_ |y, < ecoh, @= 1,2, whence Uj, = —U,
therefore denoting by V;° (z) the trace of the function U;° on the plane{z € Q, z =01,
we obtain (3,13), where V;° (x) € L, (Q). In the left-hand side of (3,13) we have a funce
tion which belongs to W, (V;) and is equal to zero on §,!, therefore it is necessary
that V;°, U, ; € W,! (Q) and (3,14) holds,

Corollary. ° o ° v
y 8,° = n(Us”)z +nVy", Vi) (3.15)
Lemma 5, The following equalities are valid:
ayy” = 0, Ggg” == 0, 0gs° = 0, f.e. =0 (3.16)

Proof, Let us prove first that a,3°, &,,°, @ss” are constants with respect tothe coor-
dinate z. Let ¢ be a smooth finite function in the domain V; , We set in the identity
(3. 9y U = (0, 0, ¢), then

S (o0s"h1Q | + ons"h1g 4 "k ) ddz = S (U) (3.17)
Vi
Multiplying (3,17) by 22 and taking the limit for fixed ¢ and h--» 0, we obtain the

. it
identi y S ceaa"q)’ s drdz =0

Vi

Let us prove that if f & L, (V;) and if for every smooth finite function @ in ¥, the
identity

S f@ pdx dz =0 (3.18)
Vi
is valid, then f (», z) == f (). In fact, assume that the positive nurnber p is smaller than
the distance from the boundary of ¥, to the carrier of the function ¢ (the carrier of a
function is the set of points where the function is different from zero), then changing in
(3.19) ¢ by ¢, (p, is the average of the function ¢ in the sense of S, L, Sobolev), we

obtain S (@) v dz = — S (), 9dzds =0
Vi v
Hence it follows that in each interior subdomain of the domain J, we have (f ), = 0,
e, f, (@, 2)=f, (@). But |f,—Fly,—0 for p — 0, from where it follows that in
every interior subdomain (and, consequently, in the entire domain v,) f=f (z). From
what we have proved it follows that o;;° = 3;° (#); similarly, '
tyg” = Oy3° (), Oyp” EE Gas” (7).
Assume now that ¢ {(z) is a smooth finite function in the domain @ , Weset U =
{0, 0, » (x)z) in(3,9) and we obtain the identity
S (s 1z | 1o HTIER - 3 12Q) d dz = S (U) (3.19)
\Z
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Multiplying (3,19) by h? and taking the limit for A ~ 0, we obtain

“ au3°pdrdz =0 (3.20)
Vi
But «°33 depends only on z, therefore from (3,20) it follows that a5,° = 0. Similarly,
we obtain that o5° == 0,° = 0.
Lemma 6. The following equalities are valid:

Ve = v, v,° =, U° = wt (3.21)
Proof, Let us prove that the triplet (V,°, V,°, U,°) satisfies the identity (3.24),
which is a necessary and sufficient condition in order that this triplet of functions be the
solution of the problem K, ({}°), and by virtue of the uniqueness of the solution of
problem K, (§°) we obtain (3.21).
Wesetin(3,9) U = (v, — w, %, U, — W32, W), where (vy, v, w) & G. Then
8; (U) = n (w)z + n (vy, vy), 8, (U) = 0, and (3. 9) takes the form

{ o8,* (U) dz dz = S (U) (3.22)
Vi
But from (3. 8), (3. 3), (2. 3) it follows that
o) = 8,"B -+ a," A5} Ay (3.23)

Substituting (3, 23) into (3, 22), taking the limit for h — 0, making use of (3.16), (3.15)
and integrating with respect to z, we obtain the identity

S(MOPM* 4 MoPN* - moQN* + MeQu*) dz = 1 (1, Vs, W) (3.24)
0
(m=p@), w=ny ), R=nl), MW=n({",V)

which proves the lemma,

Thus, the representations (3, 4) are proved with the stipulation that R;", R, converge
weakly to zero in W,! (V,), L, (V;) ,respectively,

Lemma 7, [20]. Let H be a Hilbert space, If the sequence {f,} & H and j,
converges weakly to f, in H and, in addition, | f |g — | f, || g, h — O, then f,
converges strongly to f, in H .

Lemma 8 (concluding the proof of Theorem 2). The following limits for 2 — (

lid:
aeva U ~Ul v, —0, =123 (3.25)
feo" [v,— 0 (3.26)

Proof, Substituting U = U" into (8.10), after transformations we obtain
§182B (8:M)* + o 43} (c")*] dz dz = § (UM (3.27)
V,y

By virtue of the embedding theorem [19], the family U" is sttongly compact in L,(V,),
while the family of the traces of the functions U”* on the surface S,! is strongly com-
pact in L, (S,'). Therefore, making use of (1,4),(2.1),(2.12), we can show that for

h—>0 .
SUM— LV, V2, Uy) = \ 8:°B (6,°)* dx dz (3.28)

Vi
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Since §," converges weakly in L, (V;) to 8,°, we have the inequality

S 8:°B (8,7)* da dz < lim { 8,"B (8,")* da dz (3.29)
h—o 7,
From (3. 27) — (3, 29) and from the uniform positive definiteness of the matrix A,,™! it
follows that

{ 6,85 dzdz— \ 8,°B(8:)* dwdz, 10 (3.30)
Vi Vi

g gt AR (") dwdz —0,  h 0 (3.31)
Vi

From (3, 31) we obtain (3, 26), while from (3, 30) and from Lemma 7 we obtain
18" — 8:°|v,— 0, nr—0 (3, 32)

Lemma 4, (3.6),(3.32) give the following relations (in (3. 33) the convergence is

in L2(V1) for h——)o):
(U?<+U?.z)—»OEU§,i+U?.Z, i=1,% Uh:—>0=0U;, (3.33)

i Uiiy i=1,% (Uit Usa)=(Uia+ UL

From (3. 33) and Korn's inequality (2,11) we obtain (3. 25),

bet us prove Theorem 3, Assume that the assertion of the theorem does not hold, By
U,." we denote the totality of the integral characteristics corresponding to the load
N ", By virtue of (2,13) there exists a sequence h; = 0, i — oo, and 9°= 0, such
that each of the components 3"i converges weakly in L, to the correspondmg compo-
nent of 9°. Observing the proof of Theorem 2, we can see that in order that it should
hold it is suff1C1ent 1o have at least the weak convergence of 9" to 4°, therefore
o"i (¢, N* y 99) = 0, i — oo. Followmg the proof of Lemma 8, we can prove that

| 0" (coy N:lei’ 9) — " (co, N 1)[—*0 {— 0,
and then we obtain that o)hi* (co) = 0, i > oo. The contradiction obtained proves
the theorem,
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CONTACT PROBLEM OF ROLLING OF A VISCOELASTIC CYLINDER
ON A BASE OF THE SAME MATERIAL

PMM Vol 37, N5, 1973, pp. 925-933
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The problem of rolling of a viscoelastic cylinder on a base of the same material
is solved under the assumption that the whole contact area consists of two sec=-
tions: a section with adhesion and a section with slipping of the contacting sur-
faces, Equations are found to determine the length of the contact area and the
adhesion section, as are expressions for the stresses on the contact area,



